• Cefpodoxime proxetil packaged and labeled.

click on thumbnail to zoom
SKU: C015

Size  
Quantity:
  Click 'Bulk Order' for 10 or more
Price: make selection(s)
Description

Cefpodoxime Proxetil is a s a pro-drug tht is de-esterified in vivo to its active metabolite Cefpodoxime, a broad-spectrum, third-generation cephalosporin β-lactam antibiotic.  It is soluble in DMSO.

We also offer:

    CAS Number

    87239-81-4

    Molecular Formula

    C21H27N5O9S2

    Molecular Weight

    557.60

    Mechanism of Action

    Like β-lactams, cephalosporins interfere with PBP (penicillin binding protein) activity involved in the final phase of peptidoglycan synthesis. PBP’s are enzymes which catalyze a pentaglycine crosslink between alanine and lysine residues providing additional strength to the cell wall. Without a pentaglycine crosslink, the integrity of the cell wall is severely compromised and ultimately leads to cell lysis and death. Resistance to cephalosporins is commonly due to cells containing plasmid encoded β-lactamases. However, like many cephalosporins, cefpodoxime is stable in the presence of β-lactamases.

    Storage Conditions

    -20°C, protect from light

    Tariff Code

    2941.90.5000

    Spectrum

    Cefpodoxime Proxetil is a broad-spectrum antibiotic which targets a wide variety of Gram-positive and Gram-negative bacteria especially those which cause otitis media and pharyngitis.<

Applications

    Microbiology Applications

    Cefpodoxime Proxetil is commonly used in clinical in vitro microbiological antimicrobial susceptibility tests (panels, discs, and MIC strips) against Gram-positive and Gram-negative microbial isolates. Medical microbiologists use AST results to recommend antibiotic treatment options.

    • Klebsiella pneumoniae 8 µg/mL - 64 µg/mL
    • Haemophilus influenzae 0.032 µg/mL – 1 µg/mL

    For a complete list of Cefpodoxime MIC values, click here.

    Cefpodoxime from TOKU-E was used as a reference compound when characterizing the extended-spectrum AmpC (ESAC) B-lactamase enzymes (Lahiri et al, 2014).

    In vitro kinetic modeling can be used to study the pharmacokinetic-pharmacodynamic modelling of the antibacterial activity of cefpodoxime.  This approach has more detailed information than the MIC about the time course of efficacy  (Liu et al, 2005).

Specifications

    Form

    Powder

    Appearance

    White or off-white powder

    Source

    Synthetic

    Impurity Profile

    Impurity A| (6R,7R)-7-[[(2Z)-2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetyl]amino]-3-(methoxymethyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (cefpodoxime)|80210-62-4|C15H17N5O6S2|427.46| Impurity B| (1RS)-1-[[(1-methylethoxy)carbonyl]oxy]ethyl (6R,7R)-7-[[(2Z)-2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetyl]amino]-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (ADCA-analogue of cefpodoxime proxetil)||C20H25N5O8S2|527.57| Impurity C| (1RS)-1-[[(1-methylethoxy)carbonyl]oxy]ethyl (6R,7R)-7-[[(2Z)-2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetyl]amino]-3-(methoxymethyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-3-ene-2-carboxylate (delta-2-cefpodoxime proxetil)||C21H27N5O9S2|557.59| Impurity D| (1RS)-1-[[(1-methylethoxy)carbonyl]oxy]ethyl (6R,7R)-7-[[(2E)-2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetyl]amino]-3-(methoxymethyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (anti-cefpodoxime proxetil)||C21H27N5O9S2|557.59| Impurity E| (1RS)-1-[[(1-methylethoxy)carbonyl]oxy]ethyl (6R,7R)-3-(acetoxymethyl)-7-[[(2Z)-2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetyl]amino]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (ACA-analogue of cefpodoxime proxetil)||C22H27N5O10S2|585.61| Impurity F| (1RS)-1-[[(1-methylethoxy)carbonyl]oxy]ethyl (6R,7R)-7-[[(2Z)-2-[(2-formylamino)thiazol-4-yl)-2-(methoxyimino)acetyl]amino]-3-(methoxymethyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (N-formyl cefpodoxime proxetil)||C22H27N5O10S2|585.61| Impurity G||||| Impurity H| mixture of the diastereoisomers of 1-[[(1-methylethoxy)carbonyl]oxy]ethyl (6R,7R)-7-[[(2Z)-2-[2-[[(2R)-2-[[(2Z)-2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetyl]amino]-2-[(2R)-5-(methoxymethyl)-4-[[1-[[(1-methylethoxy)carbonyl]oxy]ethoxy]carbonyl]-3,6-dihydro-2H-1,3-thiazin-2-yl]acetyl]amino]thiazol-4-yl]-2-(methoxyimino)acetyl]amino]-3-(methoxymethyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (cefpodoxime proxetil dimer||C43H52N10O19S4|1141.19|

    Water Content (Karl Fischer)

    ≤3.0%

    Optical Rotation

    +35° to +48°

    Assay

    (On Dried Basis): ≥96.0%

    Residue On Ignition

    ≤0.2%

    Heavy Metals

    ≤20ppm

References

    References

    Borin MT (1991)  A review of the pharmacokinetics of defpodoxime proxetil. Drugs. 42(3):13-21

    Georgopapadakou NH (1992)  Mechanisms of action of Cephalosporin 3'-quinolone esters, carbamates, and tertiary amines in Escherichia coliAntimicrob. Agents and Chemother.  37(3):559-565

    Lahiri SD, Giacobbe RA, Johnstone MR and Alm RA (2014)  Activity of avibactam against Enterobacter cloacae producing an extended-spectrum class C β-lactamase enzyme. J. Antimicrob. Chemother. 69(11):2942–2946  

    Liu P, Rand KH, Obermann B and Derendorf H (2005)  Pharmacokinetic-pharmacodynamic modelling of antibacterial activity of cefpodoxime and cefixime in in vitro kinetic models. Int. J. Antimicrob. Agents 25(2):120-129  PMID 15664481

    Wise R,  Andrews JM, Ashby JP and Thornber D (1990)  The in-vitro activity of cefpodoxime: a comparison with other oral cephalosporins.  J. Antimicrob. Chemother.  25(4):541–550  PMID 2351624


Other Items In This Category