

Tetracycline, USP PRODUCT DATA SHEET

issue date 01/06/2020

Product Name:	Tetracycline, USP
Product Number:	T051
CAS Number:	60-54-8
Molecular Formula:	$C_{22}H_{24}N_2O_8 \cdot xH_2O$
Form:	Powder
Appearance:	Yellow crystalline powder
pH:	3.5 - 7.0
Storage Conditions:	2-8 °C
Description:	Tetracycline is a light-sensitive bacteriostatic polyketide antibiotic frequently used in a wide range of <i>in-vitro</i> cell culture applications. Tetracycline (achromycin) is a first-generation tetracycline antibiotic and was first identified in 1953 by Chemist Lloyd Conover's team at Pfizer, in collaboration with R.B. Woodward of Harvard University. Tetracycline is a naturally occurring antibiotic from <i>S. aureofaciens, S. rimosus</i> , and <i>S. viridofacien</i> that shows wide ranging activity against both gram-negative and gram-positive bacteria.
	Tetracycline is a protein synthesis inhibitor. Tetracycline bind the 30s ribosomal subunit, preventing the aminoacyl-tRNA from attaching to the A site. Consequently, protein synthesis is inhibited. Resistance to tetracycline arises from loss of cell wall permeability, tetracycline efflux, ribosome protection and tetracycline modification.
	Tetracycline is used to study transcriptional activation. Knowledge of tetracycline led to the development of a popular inducible expression system in eukaryotic cells known as Tet-Off and Tet-On. Tetracycline is also used in multidrug resistance studies and in cell culture applications as a selective agent. Additionally, it promotes expression of the P450 proteins.
	TOKU-E offers three forms of tetracycline: <u>tetracycline HCL (T004)</u> , tetracycline, USP (T051), and <u>tetracycline, EP (T016)</u> . Tetracycline, USP and tetracycline, EP are sparingly soluble in aqueous solution at 0.231 mg/mL. Tetracycline HCI, is slightly soluble in aqueous solution at 10mg/mL.
	Tetracycline, USP (T051) conforms to United States Pharmcopeia specifications.

Mechanism of Action:	Tetracycline inhibits bacterial growth in gram-positive and gram-negative bacteria by disrupting codon-anticodon interactions at the ribosome, thus blocking protein synthesis. Specifically, tetracycline binds to a single site on the 30S ribosomal subunit and inhibit protein synthesis by blocking the attachment of charged aminoacyl-tRNA to the A site on the ribosome. Thus, they prevent introduction of new amino acids to the nascent peptide chain. Mammalian cells are not vulnerable to the effect of tetracycline as these cells contain no 30S ribosomal subunits so do not accumulate the drug.
Spectrum:	Tetracycline is a broad spectrum antibiotic, effective against both gram- positive, gram-negative bacteria, and mycoplasma. A few species of bacteria display intrinsic resistance to tetracycline, including <i>Pseudomonas</i> <i>aeruginosa</i> . Acquired (as opposed to inherent) resistance has proliferated in many pathogenic organisms and greatly eroded the versatility of Tetracycline derivatives. Resistance amongst <i>Staphylococcus</i> , <i>Streptococcus</i> , <i>Neisseria</i> <i>gonorrhoeae</i> , and members of the <i>Enterobacteriaceae</i> is now quite common. Tetracyclines show activity against protozoan parasites as well.
Microbiology Applications	Tetracycline is routinely used as a selective agent to select for bacterial cells that have been transformed with a plasmid that contains the tetracycline resistance gene, tet. Tetracycline is typically used at 10 µg/mL. Tetracycline has several clinical uses in treating bacterial infections such as Q fever, Rocky Mountain spotted fever, tick fevers, typush fever, Brill-Zinsser disease as well as to treat upper respiratory infections and acne. It has been used in studies of multidrug resistance and potential side effects including acute pancreatitis.
	It has been recognized for some time that the spectrum of activity of tetracyclines encompasses various protozoan parasites such as <i>P. falciparum, Entamoeba histolytica, Giardia lamblia, Leishmania major, Trichomonas vaginalis</i> , and <i>Toxoplasma gondii</i>
Plant Biology Applications	Tetracycline has shown to suppress aster yellows disease symptoms on China Aster and Chrysanthemum plants. Tetracyclines are sprayed onto fruit trees and other plants to treat infection by <i>Erwinia amylovora</i> , injected into palm trees to treat mycoplasma infections (lethal yellow), and used to control infection of seeds by <i>Xanthomonas campestris</i> (black rot). Multiple applications of tetracycline resulted in symptomless plant growth.
Cancer Applications	Tetracycline derivatives induce apoptosis in osteoclasts, Jurkat T lymphocyte cells and in cultured monocytes and macrophages. It is a compound that has been shown to induce apoptosis in various cells.
	Tetracyclines and chemically modified tetracyclines, like Col-3, inhibit the activity of several matrix metalloproteinases (MMPs) that are important enzymes in tumor cell invasion and metastatic ability.
Insect Biology Applications	Tetracyclines have applications in the treatment of insects of commercial value; e.g., oxytetracycline is used to treat foulbrood disease of the honeybee, which is caused by either <i>Bacillus larvae</i> or <i>Streptococcus pluton</i> .

References:

Chopra, Ian, and Marilyn Roberts. "Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance." *Microbiology and Molecular Biology Reviews* (2001): 232-60. *Http://www.ncbi.nlm.nih.gov.* Web. 21 Aug. 2012.

Davis R.E. and Whitcomb, 1970, R.F. Evidence on Possible Mycoplasma Etiology of Aster Yellows Disease. Infection and Immunity, Aug. 1970, p. 201-208

Green and Sambrook. Molecular Cloning, A Laboratory Manual (2012).

Backman K, Boyer HW. Tetracycline resistance in Esherichia coli is mediated by one polypeptide. Gene 26: 197-203. (1983).

Gatz, C. Novel inducible/repressible gene expression systems. Methods Cell Biol. 50: 411-424. (1995)

If you need any help, contact us: info@toku-e.com. Find more information on: www.toku-e.com/