

Ceftibuten PRODUCT DATA SHEET

issue date 01/06/2020

Product Name: Ceftibuten

Product Number: C069

CAS Number: 97519-39-6

Molecular Formula: $C_{15}H_{14}N_4O_6S_2$

Molecular Weight: 410.42 g/mol

Form: Powder

Appearance: White to light yellow crystalline powder

Solubility: freely soluble in aqueous solution (70.5 mg/mL) and DMSO.

Source: Synthetic

Water Content (Karl

Fischer):

8.0-13.0%

Optical Rotation: +135° - +155°

Storage Conditions: -20°C

Description: Ceftibuten is a third generation cephalosporin antibiotic. It has exceptional

beta-lactamase stability and is resistant to inactivation by most B-lactamases made by common Gram-negative and Gram-positive bacteria. Ceftibuten can be used to study drug resistance and transport pathways. Ceftibuten is freely

soluble in aqueous solution (70.5 mg/mL) and DMSO.

Mechanism of Action: Like β-lactams, cephalosporins interfere with PBP (penicillin binding protein)

activity involved in the final phase of peptidoglycan synthesis. PBP's are enzymes which catalyze a pentaglycine crosslink between alanine and lysine residues providing additional strength to the cell wall. Without a pentaglycine crosslink, the integrity of the cell wall is severely compromised and ultimately leads to cell lysis and death. Resistance to cephalosporins is commonly due to

cells containing plasmid encoded β-lactamases.

Spectrum: Ceftibuten is a broad spectrum antibiotic targeting a wide variety of Gram-

positive and Gram-negative bacteria.

Microbiology Applications Ceftibuten is commonly used in clinical in vitro microbiological antimicrobial

susceptibility tests (panels, discs, and MIC strips) against Gram-positive and Gram-negative microbial isolates. Medical microbiologists use AST results to recommend antibiotic treatment options for infected patients. Representative

MIC values include:

- Haemophilus influenzae 0.015 μg/mL 1 μg/mL
- Escherichia coli 0.015 μg/mL 8 μg/mL
- For a complete list of ceftibuten MIC values, click here.

References:

Debbia EA, Schito CG and Pesce A (1991) Antibacterial Activity of Ceftibuten, a New Oral Third Generation Cephalosporin. J. Chemother 3(4): 209-225

Georgopapadakou, NH (1992) Mechanisms of action of cephalosporin 3'-quinolone esters, carbamates, and tertiary amines in *Escherichia coli*." Antimicrob. Agents Chemother. 37(3): 59-65.

Jones RN and Barry AL (1988) Antimicrobial activity, spectrum, and recommendations for disk diffusion susceptibility testing of ceftibuten (7432-S; SCH 39720), a new orally administered cephalosporin. Antimicrob. Agents and Chemother. 32 (10) 1576-1582;

Jones RN (1995) A review of antimicrobial activity, spectrum and other microbiologic features. Pediatr Infect Dis J. 14(7):S77-83 PMID 7567314

Menon RM and Barr WH (2002) Transporters involved in apical and basolateral uptake of ceftibuten into Caco-2 cells. Biopharmaceutics and Drug Disposition. 23(8):317-326

Owens RD, Nightingale CH and Nicolau DP (1997) Ceftibuten: An overview. Pharmacother. 17(4):707-720 PMID 9250548

Perilli M et al (2007) In vitro selection and characterization of mutants in TEM-1-producing *Escherichia coli* by ceftazidime and ceftibuten. J Chemother 19(2):123-126 PMID 17434819

Wise R, Andrews JM, Ashby JP and Thornber D (1990) *In-vitro* activity against respiratory pathogens, β -lactamase stability and mechanism of action, J. Antimicrob Chemother. 26 (2): 209–213 PMID 2120175

If you need any help, contact us: info@toku-e.com. Find more information on: www.toku-e.com/