

Specified Path CMC LEAD AND LINE PRODUCT DATE SHEET

issue date 01/06/2020

Product Name: Cyclosporin H, EvoPure®

Product Number: C046

CAS Number: 83602-39-5

Molecular Formula: $C_{62}H_{111}N_{11}O_{12}$

Molecular Weight: 1202.6 g/mol

Form: Powder

Appearance: White crystal powder

Source: Tolypocladium Inflatum

Water Content (Karl

Fischer):

3.0%

Melting Point: 162-165°C

Storage Conditions: -20°C

Description: Cyclosporin H is a hydroxylated metabolite of Cyclosporin A. Cyclosporin H

(M-1) and other cyclosporin metabolites have been found to have lower (<10%) immunosuppressant activity than cyclosporin A. Cyclosporin H has been found to be a potent inhibitor of superoxide anion (O₂-) formation by FMLP (N-Formylmethionyl-leucyl-phenylalanine) in human neutrophils.

For more Cyclosporin products, click here.

Mechanism of Action: Cyclosporin H (and other cyclosporin A metabolites) have lower

immunosuppressant activity but most likely operate under the same

mechanism as cyclosporin A (CsA) described below.

Cyclosporin B (and other cyclosporin A metabolites) have lower

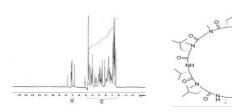
immunosuppressive activity but likely operate under the same mechanism as

cyclosporin A described below. After entering a T-cell, Cyclosporin A

associates with the cytosolic protein cyclophilin which helps in protein folding. Cyclosporin A binds to cyclophilins and this complex binds another cytosolic protein phosphatase called Calcineurin (protein phosphatase 2B) that dephosphorylates a transcription factor (nuclear factor of activated T-cells, or NF-AT) needed for expression of interleukin 2 (IL-2.). It also blocks the

pathway to nitric oxide synthesis via tumor necrosis factor (TNFa) and

Interleukin 1a.

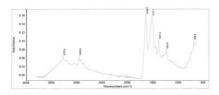

Cancer Applications Cyclosporin's immunosuppressive properties and potential toxicity can be

studied during in vitro assays. Other metabolites of Cyclosporin A (AM1, AM1c, DihydroAM1, AM19, and AM4N) can also be studied (Vollenbroeker B

et al, 2005).

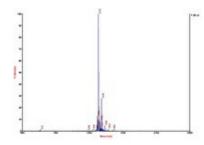
Technical Data:

HNMR Spectra


Click to enlarge

Solvent: CDC13

Instrument: Mercury 300


Frequency: 300 MHz

FTIR Spectra

Click to enlarge

Mass Spectra

Click to enlarge

Polarity/Scan Type: Positive
Solvent: MeOH

Solution Concentration: 0.1 mg/mL

Instrument: Agilent

References:

Anderson MA and Gusella JF (1984) Use of Cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro 20(11):856-858. PMID 6519667

Copelan KR, Yatscoff RW and McKenna RM (1990) Immunosuppressive activity of Cyclosporine metabolites compared and characterized by mass spectrometry and nuclear magnetic resonance. Clin. Chem. 36(2): 225-229. PMID 2137384

Dreyfuss, M et al (1976) Cyclosporin A and C. Eur. J. Appl Microbiol. 3(2): 125-133

Laupacis A et al. PA (1982) Cyclosporin A: A powerful immunosuppressant. Can. Med Assoc. J 126(9):1041-1046 PMID 7074504

Matsuda S and Koyasu S (2000) Mechanisms of Action of Cyclosporine. Immunopharmacol. 47(2-3): 119-125. PMID 10878286

Matsuda, S (2000) Mechanisms of action of cyclosporine. Immunopharmacol. 47(2-3):119-125. PMID 10878286

Oliyai R. & Stella V. J. (1992) Kinetics and mechanism of isomerization of cyclosporin A. Pharm. Res. 9(5):617-622

Stiller, CR and Ulan RA (1981) Cyclosporin A: A Powerful Immunosuppressant."Can. Med. Assn. 126 (1981): 1041-046.

Vollenbroeker B et al (2005) Determination of cyclosporine and its metabolites in blood via HPLC-MS and correlation to clinically important parameters. Transplant Proc. 37(4):1741-1744 PMID 15919451

Wang, PC et al. (1989) Isolation of 10 Cyclosporine Metabolites from Human Bile. Drug Metab. Dispos. 17(3): 292-296 PMID 2568911

Watashi K, Hijikata M, Hosaka M, Yamaji M, Shimotohno K (2003) Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes. Hepatol. 38(5):1282-1288. PMID 14578868

Zheng XS, Chan T, and Zhou HH (2004) Genetic and genomic approaches to identify and study the targets of bioactive small molecules. Chem and Biol 11(5):609-618 PMID 15157872

If you need any help, contact us: info@toku-e.com. Find more information on: www.toku-e.com/