

# Specified Britan Std; Edispliates PRODUCT DATE/SHEEP

issue date 01/06/2020

**Product Name:** G418 Disulfate, EvoPure®

Product Number: G030

**CAS Number:** 108321-42-2

**Molecular Formula:**  $C_{20}H_{40}N_4O_{10} \cdot xH_2SO_4$  (lot specific)

**Molecular Weight:** 496.55 g/mol (Free base)

Form: Powder

**Source:** Biosynthetic: produced by *Micromonospora rhodorangea*.

**Absorbance:** 1mg/ml (water): 280nm < 0.015 570nm < 0.01 100mg/ml (water): 570nm < 0.01

1.74g/25 ml (water): 280nm < 0.7

**pH:** 4.6-6.0

**Boiling Point:** 1012.1 °C

Flash Point: 565.9 °C

Storage Conditions: Ambient

**Description:** G418 Disulfate, EvoPure® is a highly pure (≥ 99.0%) version of our G418

Disulfate. It has been purified to remove the impurities commonly present in G418 Disulfate (G001). This aminoglycoside antibiotic originally isolated from *Micromonospora rhodorangea* is routinely used for gene selection in cell

culture.

We also offer:

• G418 Disulfate Solution (50 mg/ml in Water)(G020-G021)

• G418 Disulfate (G001)

**Mechanism of Action:** G418 disulfate, and other aminoglycosides, including <u>kanamycin</u> and

neomycin, prevent protein synthesis by blocking the elongation step in

prokaryotic and eukaryotic ribosomes.

Mechanism of resistance:

Resistance to G418 sulfate is conferred by the *neo* gene (neomycin resistant

gene) from either Tn5 or Tn601 (903) transposons. Cells successfully

transfected with resistance plasmids containing the *neo* resistance gene can express aminoglycoside 3'-phosphotransferase (APT 3' I or APT 3' II) which covalently modifies G418 to 3-phosphoric G418. 3-phosphoric G418 has negligible potency and has low-affinity for prokaryotic or eukaryotic ribosomes.

**Spectrum:** G418 Disulfate is toxic to susceptible bacteria and fungi.

Microbiology Applications G418 Disulfate is used as a gene selection agent during transfection of

eukaryotic cells.

#### **Technical Data:**

## **HNMR Spectra**



### Click to enlarge

Solvent: D2O

**Instrument:** Mercury 300 **Frequency:** 300 MHz

## FTIR Spectra



Click to enlarge

## **Mass Spectra**



## Click to enlarge

Polarity/Scan Type:PositiveSolvent:WaterSolution Concentration:10 mg/mL

#### References:

Aragão FJL and Brasileiro ACM (2002) Positive, negative and marker-free strategies for transgenic plant selection. Braz. J. Plant Physiol. 14(1):1-10

Davis BD (1987) Mechanism of bactericidal action of aminoglycosides. Microbiol. Rev. 51(3):341-50

Delrue I, Pan Q, Baczmanska AK, Callens BW and Verdoodt LLM (2018) Determination of the selection capacity of antibiotics for gene selection. Biotechnol. J. 13(8):1700747 PMID 29436782

Lin-Cereghino J et al (2008) Direct selection of *Pichia pastoris* expression strains using new G418 resistance vectors. *Yeast* 25:293-299

Shin Y (2007) Selection of NptII transgenic sweet potato plants Using G418 and paromomycin. J. Plant Biol. 50(2):206-212

If you need any help, contact us: <a href="mailto:info@toku-e.com">info@toku-e.com</a>. Find more information on: <a href="mailto:www.toku-e.com">www.toku-e.com</a>/